[11:00-11:35] Continuation of Lecture 1: Sampling and sound in MATLAB

To reconstruct a frequency f, a signal must be sampled at a rate strictly greater than 2f.

It's common to sample much higher than 2*f*. Audio is often sampled at 48,000 Hz or higher, even though the maximum audible frequency is between 15,000 Hz and 17,000 Hz for most adults.

Standar	2	ECE 313 Evans
- Audio Sampling Rates		Slide 1-15
- angesh		
9000 Hz	11,025	
50mp 16000 Hz	22,050	. (27)
32000 HZ	44,100.H2 @	48000 HZ
	38, 200 Hz	96000 HZ
31,250 Hz	196, 400 HZ	192000 Hz
MIDI 24000 HZ		<u>.</u>
La Musical Instrument	•	
Dy tal Interface		
0	, '	
CO Compact Disc		
DAT Digital Andio Tape		

MATLAB's sound(x) command will play an audio signal represented by an array x using the default sample rate of 8192 Hz. A different sampling rate fs can be specified using sound(x,fs), in which case MATLAB will automatically <u>resample</u> the sound to a rate that is compatible with the computer's sound system.

The soundsc command will scale the range of the signal to [-1, 1] prior to playing it. This increases the volume of small amplitude signals and prevents clipping when playing a signal whose amplitude exceeds the range [-1,1].

[11:35 - 12:05] Systems

Systems operate on one or more input signals to produce one or more output signals. Examples:

Averaging a continuous signal with a one-second delayed version of itself:

$$y(t) = \frac{1}{2}x(t) + \frac{1}{2}x(t-1)$$

Discrete time low-pass averaging filter:

$$y[n] = \frac{1}{2}x[n] + \frac{1}{2}x[n-1]$$

Squaring block:

$$y(t) = x(t)^2$$

The squaring block is nonlinear and changes the frequency or frequencies of the input signal x(t). The output y(t) of the squaring block contains:

- Double the frequency (or frequencies) of x(t)
- A DC offset (zero Hertz)

[11:55-12:05] Lecture 2: Periodic signals

A signal x(t) is periodic with period T if x(t - nT) = x(t) for any integer n.

A periodic signal can have multiple periods. The smallest positive period is the fundamental period.

Time shift and phase shift

A common system involves shifting a signal x(t) in time by T seconds. If T is positive, this system is also called a delay.

$$D_T\{x(t)\} = x(t-T)$$

For sinusoids, a time shift causes a phase shift:

$$D_T\{A\cos(2\pi f_0 t)\} = A\cos(2\pi f_0 (t-T)) = A\cos(2\pi f_0 t - 2\pi f_0 T)$$

Phase shifts are commonly used in wireless communications, sonar, and radar systems to separate signals spatially.